
SQL Server

Execution Plan Primer
Iowa Code Camp

17 Jun 2023

Breanna Hansen

breanna@tf3604.com

@SqlBreanna www.breannahansen.com

Welcome to Iowa Code Camp!

➢ Enjoy these two days of learning

➢ Be sure to visit and thank the sponsors

➢ Be sure to thank the organizer and

volunteers

➢ Take time to NETWORK with others. That’s

what this is really all about!

➢ Act professionally and treat others with

respect (like this was a work environment)

Agenda

 Why do we care about execution plans?

 What are the inputs to the optimizer?

 How does the optimizer generate a plan?

 What types of plans are there?

 What operators do we see in execution plans?

 What are some useful ways to execute a plan?

Why Care about Execution Plans?

 SQL is a declarative language

We are telling the server WHAT we want, not how

to answer the question

 The execution plan tells us HOW SQL Server is

resolving the query

 Can be very useful to identify performance issues

Why Care about Execution Plans?

 Execution plans provide front-line insight into

decisions made by the optimizer

Order in which tables are accessed

What indexes are used

How much data is expected

 “Hidden” internal operations

Inputs to Optimization

 The query text

 Physical specs of system (memory, cores, etc.)

 SET options in effect

 Cardinality estimates

 DB properties of referenced objects (data types,

nullability, check constraints, foreign keys,

uniqueness, etc.)

 Plan cache (optimizer bypass)

Items that are NOT optimizer inputs

 Has the data already been loaded into memory?

Cold cache is assumed

 Type of I/O subsystem

 Spinning disk vs. SSD

Cardinality Estimation

 How many rows will this part of the query generate?

 SQL Server will always generate an estimate

 May be based on statistics or just a guess (heuristics)

 Two primary versions of estimator

 SQL Server 7

 Server Server 2014

(But each later version of SQL has its own CE)

 Version used based on compatibility level, DB settings,

trace flags, query hints

Statistics

 SomeTable has 1,000,000 rows

 There is an index on SomeColumn

 How many rows will the query generate?

select ID, SomeColumn, Description

from dbo.SomeTable

where SomeColumn = 123456;

Selectivity

 It depends on how selective SomeColumn is

 Maybe every row has 123456

 Low selectivity

 Or maybe every row is unique

High selectivity

 Or somewhere in-between

Selectivity

 A high-level measure of selectivity is “density”

1

Number of distinct values

 If every row is 123456

Density = 1

 If every row is unique

Density = 0.000001 (1/1,000,000)

Let’s get more specific

select c.ID, c.FirstName, c.LastName, c.State

from dbo.Customer c

where c.LastName like ‘B%';

select c.ID, c.FirstName, c.LastName, c.State

from dbo.Customer c

where c.LastName like ‘Q%';

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

An equality query

select c.ID, c.FirstName, c.LastName, c.State

from dbo.Customer c

where c.LastName = 'Baker';

 Baker = 1193 rows

 How about this one?

select c.ID, c.FirstName, c.LastName, c.State

from dbo.Customer c

where c.LastName = 'Baldwin';

 Between Baker & Barnes: average key has 3.603 rows

 Estimate is 3.603 rows (actual is 210 rows)

 But 'Banjo' will also be estimated as 3.603 rows

(actual = 1)

Statistics: Key Points

 Based on contents of the index at some past time

 Maximum of 200 steps

 Becomes a key input to the cardinality estimator

 Update frequency based on how many rows in the

table have been modified

Through SQL 2014: 20% of rows

After SQL 2016: Default is more aggressive updating

DBA jobs to update (Ola Hallengren maintenance

solution)

https://ola.hallengren.com/
https://ola.hallengren.com/

Types of Execution Plans

 Text

 XML

 Graphical

select c.State, sum(od.Quantity * od.UnitPrice) as
OrderAmount

from dbo.OrderHeader oh

join dbo.OrderDetail od on od.OrderId = oh.OrderId

join dbo.Customer c on c.CustomerID =
oh.CustomerId

where od.ProductId >= 760 and od.ProductId <= 792

group by c.State;

Types of Execution Plans – Text (Deprecated)

set showplan_text on; (less detail)

set showplan_all on; (more detail)

Types of Execution Plans - XML

set showplan_xml on;

Types of Execution Plans - Graphical

 Display Estimated Execution Plan (Ctrl-L)

Types of Execution Plans - Graphical

 Azure Data Studio

Types of Execution Plans - Graphical

 Alternate way to view graphical plans (SentryOne Plan

Explorer)

https://www.sentryone.com/plan-explorer
https://www.sentryone.com/plan-explorer

Types of Execution Plans – Estimated vs

Actual

 Estimated execution plans

Query is not executed

Best guess of plan that would actually be used

 In some cases cannot be generated

 Actual execution plans

Query is executed

 Some chance it may differ from estimated plan

 Includes runtime statistics (actual rows)

Actual Execution Plans

 Actual plan - text

set statistics profile on;

 Actual plan – XML

set statistics xml on;

 Actual plan – Graphical

 Include Actual Execution Plan (Ctrl-M)

Two Types of Tables

 Heaps

Not organized in any particular way

No index structure on top of data

Can still have nonclustered indexes

 Clustered Index

Data is stored in key order

Has a B-tree structure on top of the data

Can also have nonclustered indexes

The Execution Plan

 Consist of operators and connectors

 Connector (flow of data)

 Width indicates number of rows

 Plans are frequently read right-to-left, top-to-bottom

Operators

 About 70 operators possible; most are
infrequently seen

 Responsible to respond for a request for the next
row

 Common operators

Data Access (scans, seeks, lookups)

 Joins (merge, nested loops, hash)

Other (sorts, aggregations, spools, etc.)

Full list of operators

https://docs.microsoft.com/en-us/sql/relational-databases/showplan-logical-and-physical-operators-reference?view=sql-server-2016

Operators – Data Access

 Scan – Read entire contents of object

 Does not necessarily return all rows read

 May result from non-SARGable predicates

 Myth: scans are evil

Clustered Index Scan Index Scan Table Scan

Operators – Data Access

 Seek – Uses index structure to find key values

Can be a point lookup or involve a partial scan

 Cannot seek into a heap

 Myth: seeks are always good

Index SeekClustered Index Seek

Scans vs. Seeks

 SQL will tend to favor scans if the number of rows

expected is large enough that cost for a

(sequential) scan is less than the cost of random

I/O for seeks

 “Tipping point”

 Cardinality errors can cause the “wrong” access

type to be used

Operators – Data Access

 Lookup – Retrieve additional columns from table

Used when non-clustered index does not have all

the columns needed to resolve query (not covering)

 Useful when number of lookups is small

Key Lookup RID Lookup

Operators – Joins

 Three main join algorithms

Merge Join

Nested Loop Join

Hash Join

 (Also adaptive join, hybrid nested loop and hash)

Operators – Merge Join

 Requires both tables to be sorted on join columns

May introduce intermediate sort operation

But sorts are expensive

 Useful when data is already naturally sorted by

join columns

Bert Wagner video with

animation of merge join

https://bertwagner.com/2018/12/18/visualizing-merge-join-internals-and-understanding-their-implications/
https://bertwagner.com/2018/12/18/visualizing-merge-join-internals-and-understanding-their-implications/

Operators – Nested Loop Join

 Compare each row in top input with each row in

bottom input

 Bottom input may be static or may change

depending on value of top row

 Useful when top input is small and bottom input is

efficient to search

Bert Wagner video with

animation of loop join

https://bertwagner.com/2018/12/11/visualizing-nested-loops-joins-and-understanding-their-implications/
https://bertwagner.com/2018/12/11/visualizing-nested-loops-joins-and-understanding-their-implications/

Operators – Hash Join

 Each top row is hashed by join columns and

bucketized

 Each bottom is hashed, looked up in hash table

 Useful when both inputs are large and unsorted

Bert Wagner video with

animation of loop join

https://bertwagner.com/2019/01/02/hash-match-join-internals/
https://bertwagner.com/2019/01/02/hash-match-join-internals/

Operators – Sort

 Tends to be a very expensive operation

 Highly dependent on cardinality estimate

Drive memory grant

 Watch for spills to tempdb

 Is the sort really needed?

Sort

Operators – Aggregation

 Calculate SUM, COUNT, AVG, MIN, MAX, etc.

 Hash aggregate builds hash table to find common

rows (based on grouping columns)

 Stream aggregate input must be sorted, watches

for changes in grouping columns

Hash Aggregate Stream Aggregate

Operators – SELECT

 (Or INSERT, DELETE, UPDATE, MERGE)

 Left-most pseudo-operator

 Contains properties of the execution plan as a

whole

SELECT

Operators

 And many, many more operators

Various Insert, Update, Delete, Merge operators

Clustered idx, non-clustered idx, heap

Compute Scalar, Constant Scan

 Spools (Eager vs. Lazy)

Parallelism

Distribute Streams, Repartition Streams, Gather

Streams

 Etc.

“SARG”ability

 Search ARGument ABILITY

 Can the predicate take advantage of an index?

 Usually caused by using column in an expression

 “Negatives” generally non-SARGagble: NOT IN, <>,

etc

 Some predicates cannot be made SARGable

 Watch for implicit type casting

“SARG”ability

 Examples (assume index exists on column)

Not SARGable SARGable

Value + 1 = 7 Value = 6

LEFT(Name, 2) = ‘Sm’ Name LIKE ‘Sm%’

CAST(OrderDate as

date) = @dt

OrderDate >= @dt AND OrderDate <

dateadd(day, 1, @dt)

ISNULL(Name, ‘’) = ‘’ (Name IS NULL OR Name = ‘’)

Name LIKE ‘%ohnson’ n/a

Demo

 Execution problem pain points

Resources

 Grant Fritchey, SQL Server Execution Plans, 3rd

Edition (free download)

 AdventureWorks2014 (download)

https://www.red-gate.com/simple-talk/books/sql-server-execution-plans-third-edition-by-grant-fritchey/
https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-2017

Thank You

 This presentation and supporting materials can be

found at

www.breannahansen.com/executionplans

 Slide deck

 Scripts

 breanna@tf3604.com • @SqlBreanna

http://www.sqltran.org/executionplans
http://www.sqltran.org/executionplans
http://www.sqltran.org/executionplans

	Slide 1: SQL Server Execution Plan Primer
	Slide 2: Welcome to Iowa Code Camp!
	Slide 3: Agenda
	Slide 4: Why Care about Execution Plans?
	Slide 5: Why Care about Execution Plans?
	Slide 7: Inputs to Optimization
	Slide 8: Items that are NOT optimizer inputs
	Slide 9: Cardinality Estimation
	Slide 10: Statistics
	Slide 11: Selectivity
	Slide 12: Selectivity
	Slide 13: Let’s get more specific
	Slide 14
	Slide 15: An equality query
	Slide 16
	Slide 17
	Slide 18: Statistics: Key Points
	Slide 19: Types of Execution Plans
	Slide 20: Types of Execution Plans – Text (Deprecated)
	Slide 21: Types of Execution Plans - XML
	Slide 22: Types of Execution Plans - Graphical
	Slide 23: Types of Execution Plans - Graphical
	Slide 24: Types of Execution Plans - Graphical
	Slide 25: Types of Execution Plans – Estimated vs Actual
	Slide 26: Actual Execution Plans
	Slide 27: Two Types of Tables
	Slide 28: The Execution Plan
	Slide 29: Operators
	Slide 30: Operators – Data Access
	Slide 31: Operators – Data Access
	Slide 32: Scans vs. Seeks
	Slide 33: Operators – Data Access
	Slide 34: Operators – Joins
	Slide 35: Operators – Merge Join
	Slide 36: Operators – Nested Loop Join
	Slide 37: Operators – Hash Join
	Slide 39: Operators – Sort
	Slide 40: Operators – Aggregation
	Slide 41: Operators – SELECT
	Slide 42: Operators
	Slide 43: “SARG”ability
	Slide 44: “SARG”ability
	Slide 45: Demo
	Slide 46: Resources
	Slide 47: Thank You

